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Population synthesis studies into planet formation have suggested that distributions consistent with
observations can only be reproduced if the actual Type I migration timescale is at least an order of
magnitude longer than that deduced from linear theories. Although past studies considered the effect of
the Type I migration of protoplanetary embryos, in most cases they used a conventional formula based
on static torques in isothermal disks, and employed a reduction factor to account for uncertainty in the
mechanism details. However, in addition to static torques, a migrating planet experiences dynamic
torques that are proportional to the migration rate. These dynamic torques can impact on planet
migration and predicted planetary populations. In this study, we derived a new torque formula for Type I
migration by taking into account dynamic corrections. This formula was used to perform population
synthesis simulations with and without the effect of dynamic torques. In many cases, inward migration
was slowed significantly by the dynamic effects. For the static torque case, gas giant formation was
effectively suppressed by Type I migration; however, when dynamic effects were considered, a sub-
stantial fraction of cores survived and grew into gas giants.

� 2016, China University of Geosciences (Beijing) and Peking University. Production and hosting by
Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

The population of extrasolar planets (Baruteau and Papaloizou,
2013), and perhaps even the solar system (Walsh et al., 2011),
provide strong evidence that migration has played a role in shaping
planetary systems. Low-mass planets (i.e., those with masses up to
that of Neptune) migrate through the excitation of linear density
waves in the disk, and through a contribution from the corotation
region (i.e., Type I migration). Early analytical work (Tanaka et al.,
2002) focused on isothermal disks, in which the temperature was
prescribed and fixed. These studies found that migration was al-
ways directed inward for reasonable disk parameters, and that
migration time scales were much shorter than the disk life time;
therefore, according to migration theory, all the planets should end
up very close to the central star.

While Type I migration has always been linked to linear in-
teractions with the disk, Paardekooper and Papaloizou (2009)
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showed that corotation torque (or horseshoe drag) in isothermal
disks show nonlinear behavior and can be much larger than pre-
vious linear estimates, which works against fast inward migration.
However, the corotation tends to be prone to saturation and fail to
prevent rapid inward migration for most of the cases, since in the
absence of a diffusive process, the corotation region is a closed
system; therefore, it can only provide a finite amount of angular
momentum to a planet.

Several well-established theoretical models of planet formation
based on the core accretion scenario adopted a population syn-
thesis approach (e.g., Ida and Lin, 2004, 2008; Mordasini et al.,
2009a,b; Ida et al., 2013). Ida and Lin (2004) focused on the influ-
ence of Type I migration on planetary formation processes and
found that when the effects of Type I migration are taken into ac-
count, planetary cores have a tendency to migrate into their host
stars before they acquire adequate mass to initiate efficient gas
accretion. In order to preserve a sufficient fraction of gas giants
around solar-type stars, they introduced a Type I migration
reduction factor, where factor magnitudes of smaller than unity
work to lengthen the Type I migration timescale relative to those
deduced from linear theories.With a range of small factors (w0.01),
it was possible to produce a planetary Mp�a distribution that was
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qualitatively consistent with observations from a radial velocity
survey.While several suppressionmechanisms for Type I migration
under various circumstances have been suggested (e.g.,
Paardekooper et al., 2011), the origin of the extremely small
reduction factor values remains unknown.

Recently, it was proposed that dynamic corotation torque can
also play a role for low-mass planets, especially where static
corotation torques saturate. Paardeokooper (2014) presented an
analysis of the torques on migrating, low-mass planets in locally
isothermal disks. They found that planets experience dynamic
torqueswhenever there is a radial gradient in vortensity in addition
to static torques, which do not depend on the migration rate. These
dynamic torques are proportional to the migration rate and can
have either a positive or a negative feedback on migration,
depending on whether the planet is migrating with or against the
static corotation torque. Moreover, they showed that in disks a few
times moremassive than the minimummass solar nebula (MMSN),
the effects of dynamic torques are significant to reduce inward
migration.

In this study, we deduced a torque formula for Type I migration
by taking into account dynamic corrections. Using this formula, we
performed population synthesis simulations with and without the
dynamic corrections in order to evaluate the migration velocity
quantitatively. We found that the effective torques with dynamic
correction were much smaller than the simple static torques when
applied to disks of the MMSN model. We used dynamic torques
based on the theory of Paardeokooper (2014) and estimated actual
Type I migration, and then simulated various sets of planetary
systems based on the observed range of disk properties. Finally, we
compared the simulated results with observational data.
2. Dynamic correction of Type I migration formula

According to Paardekooper et al. (2011; hereafter Pa11) and
Coleman and Nelson (2015; hereafter CN14), new static torque
formula for Type I migration can be derived (see Appendix). When
developing the dynamic correction formula, we considered the
work of Paardeokooper (2014), who showed that Gdynamic, the term
proportional to drp/dt, must be included in the torque formula, or in
other words:

G ¼ Gstatic þ Gdynamic (1)

which is given by (Pa14 Eq. 18):

Gdynamic ¼ 2p
�
1�wc

�
w
�
rp
��
Sr2pxsUvp (2)

whereS is the surface density of the disk, rp is the semimajor axis of
the protoplanet, xs is the thickness of the horseshoe region,
U ¼ ðGM�=r3pÞ1=2 (G is the gravitational constant, and M* is the
stellar mass), and vp ¼ drp/dt is the radial velocity of the proto-
planet. Here, 1�wc/w(rp) was calculated by (Pa14 Eq. 28, modified
by TE):

1�wc
�
w
�
rp
� ¼ ð3=2þ pÞmin

�
1;

x2s
6rpn

vp

�
(3)

where p ¼ d lnS/d ln r and n is the viscosity of the disk. Assuming a
circular orbit of the protoplanet, vp can be calculated by the
equation:

slib
dvp
dt

¼ �vp þ 2qd
pqr3pUS

�
Gstatic þ Gdynamic

�
(4)

where slib ¼ 4prp/(3Uxs) is the liberation timescale of gas in the
disk, q ¼Mp/M*, and qd ¼ pr2pS=M�. For the case of slow migration
(i.e., slib�4prp/(3Uxs)�rp/vp), we were able to assume a steady
state for Eq. 4 to determine vp, or in other words:

�vp þ 2qd
pqr3pUS

�
Gstatic þ Gdynamic

�
¼ 0 (5)

2.1. Inviscid case x2s
6rpn

vp > 1

We derived vp by substituting Eqs. 2 and 3 into Eq. 4 as:

Ginviscid ¼ 1
1� ð3=2þ pÞmc

Gstatic (6)

where, mc is given by (Pa14 Eq. 20):

mc ¼ 4qdxs=q (7)

where xs ¼ xs=rp
2.2. Viscid case x2s
6rpn

vp < 1

We derived a quadratic equation of vp by substituting Eqs. 2 and
3 into Eq. 4 as:

Av2p þ Bvp þ C ¼ 0 (8)

where

A ¼ 2qdx
3
s rp

3qn

�
3
2
þ p
�

¼ mc

�
3
2
þ p
�

sn
6rp

(9)

B ¼ �1 (10)

C ¼ 2qdq
ph2

rpUgstatic ¼ rp
smig

gstatic (11)

where h is the scale height of the disk,
gstatic ¼ Gstatic=G0 ðG0 ¼ ðq=hÞ2Sr4U2Þ, and sn and smig are the
timescales of diffusion and migration, respectively, as given by
(Pa14 Eqs. 10 and 23):

sn ¼ r2px
2
s

n
(12)

smig ¼ ph2

2qdqU
(13)

The quadratic formula gives the total torque after dynamic
correction:

Gviscid ¼ QðkÞGstatic (14)

where the function Q(k) is defined by (Pa14 Eq. 30):

QðkÞ ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2k

p

k
(15)

where k is the coefficients given by (Pa14 Eqs. 31e32):

k ¼ 8
3p

�
3
2
þ p
�
gstaticq2dx

3
s

h2
rpU
n

¼
�
3
2
þ p
�
mcsngstatic

6smig
(16)

The function Q(k) takes a critical value of 2 at k ¼ 1/2, but for
k> 1/2 it does not take any value, since the inside of the square root
of Q(k) becomes negative. This suggests that runaway migration
takes place for the case k > 1/2. Paardeokooper (2014) suggested
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that the time scale of migration for runaway case would be mcsmig,
and in such a case, torque for the runaway migration would be:

Grw ¼ q
4qd

G0 (17)

The results are consistent with the numerical results of
Paardekooper et al. (2011). In their simulation, vp rapidly converged
to the values obtained here, after a short transient phase (Figs. 7, 8,
and 9 in Paardeokooper (2014)).

In summary, our new torque formula of Type I migration, taking
into account dynamic effects, is given as:

GI ¼ Gstaticmin
�

1
1�mcð3=2þ pÞ;QðkÞ

�
k < 0:5 (18)

¼ q
4qd

G0 k>0:5 (19)

Fig. 1 shows the dynamic correction factor at each semimajor
axis for embryos with masses of 0.01 M4, 0.1 M4, 1.0 M4, and 10
M4. The masses of the disks were (a) 1=

ffiffiffiffiffiffi
10

p
�MMSN, (b)

1.0 � MMSN, (c)
ffiffiffiffiffiffi
10

p
�MMSN, and (d) 10 � MMSN. Except for a

close-in small protoplanet, most protoplanets had correction fac-
tors of significantly less than 0.1; therefore, Type I migration was
generally significantly slowed by dynamic effects.
3. Planet formation and migration model

In ourmodel, we adopted themodels of Ida and Lin (2004, 2008)
and Ida et al. (2013) for (1) planetesimals’ growth through cohesive
Figure 1. Dynamic correction factor at each semimajor axis for 0.01 M4 (M4 ¼ ME), 0.1 M
1=

ffiffiffiffiffiffi
10

p
�MMSN, (b) 1.0 � MMSN, (c)

ffiffiffiffiffiffi
10

p
�MMSN MMSN, and (d) 10 � MMSN.
collisions, (2) the evolution of planetesimal surface density, (3)
embryos’ Type I migration and their stoppage at the disk inner edge
(except for a modification of the Type I migration formula to
include dynamic correction; see Section 2), and for the gas giants,
(4) the onset, rate, and termination (through gap opening and/or
global depletion) of efficient gas accretion, and (5) their Type II
migration.
3.1. Disk models

We adopted the MMSN model (Hayaschi, 1981) as a fiducial set
of initial conditions for planetesimal surface density (Sd) and
introduced a multiplicative factor (fd). For the gas surface density
(Sg), we adopted the r-dependence of steady accretion disk with
constant viscosity ðSgfr�1Þ scaled by that of the MMSN at 10 AU
with a scaling factor (fg). Following Ida and Lin (2008), we set:(
Sd ¼ Sd;10hicefdðr=10AUÞ�1:5

Sg ¼ Sg;10fgðr=10AUÞ�1:0 (20)

where normalization factors Sd,10 ¼ 0.32 g/cm2 and
Sg,10 ¼ 75 g/cm2, and the step function was hice ¼ 1 inside the
ice line at aice and 4.2 for r > aice.

Neglecting the detailed energy balance in the disk (Chiang and
Goldreich, 1997), we adopted the equilibrium temperature distri-
bution of optically thin disks given by Hayaschi (1981), such that:

T ¼ 280
� r
1AU

��1=2
�
L�
L1

�1=4

K (21)
4, 1.0 M4, and 10 M4 from top to bottom in each panel. The mass of the disks are (a)
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where L* and L1 are stellar and solar luminosity. We set the ice line
to be that determined by an equilibrium temperature in optically
thin disk regions:

aice ¼ 2:7
�
L�
L1

�1=2
AU (22)

Owing to viscous diffusion and photoevaporation, fg decreases
with time. For simplicity, we adopted:

fg ¼ fg;0exp

 
� t
sdep

!
(23)

where fg,0 is the initial value of fg and sdep is the gas depletion
timescale.
3.2. From oligarchic growth to isolation

On the basis of the oligarchic growth model (Kokubo and Ida,
1998, 2002), the growth rate of embryos/cores at any location, a,
and time t, in the presence of disk gas, was described by:

dMc

dt
¼ Mc

sc;acc
(24)

where

sc;acc ¼ 3:5�105h�1
ice f

�1
d f�2=5

g

� a
1AU

�5=2�Mc

M4

�1=3�M�
M1

��1=6

yr

(25)

where Mc is the mass of the embryo/core. Furthermore, we set the
mass of typical field planetesimals to be m ¼ 1020 g.

We computed the evolution of Sd distribution due to accretion
by all emerging embryos in a self-consistent manner. The growth
and migration of many planets were integrated simultaneously
with the evolution of the Sd-distribution.

During the early phase of evolution, embryos are embedded
in their natal disks. Despite their mutual gravitational pertur-
bation, embryos preserve their circular orbits owing to gravita-
tional drag from disk gas (Ward, 1993) and dynamic friction from
residual planetesimals (Stewart and Ida, 2000). After the disk gas
is severely depleted, the efficiency of the eccentricity damping
mechanism is reduced, and the embryos’ eccentricity grow until
they cross each other’s orbits (i.e., giant impact). However, in
this study, growth via the giant impact process was not
considered. Moreover, we also ignored dynamic interaction be-
tween planets, with the growth of individual planets integrated
independently.
3.3. Type I migration

Type I migration of an embryo is caused by the sum of tidal
torque from disk regions that are both interior and exterior to the
embryos. The rate and direction of embryos’ migration are deter-
mined by the differential Lindblad and corotation torques. While a
conventional formula of Type I migration, which assumes locally
isothermal disks (Tanaka et al., 2002), shows that the migration is
always inward, recent developments have shown Type I migration
of isolated embryos in non-isothermal disks; therefore, the
magnitude and sign of tidal torque can be changed. Ida and Lin
(2008) used the conventional formula of Type I migration in
isothermal disks derived by Tanaka et al. (2002) with a scaling
factor C1 of:
dr
dt
xC1 � 1:08ðpþ 0:80q� 2:52ÞMp

M�
Sgr2

M�

�
rUK

cs

�2

rUK (26)

where p ¼ d logSg/d log r, q ¼ d log T/d log r, cs is the sound speed,
and UK is the Keplerian angular velocity. The expression of Tanaka
et al. (2002) corresponds to C1 ¼1, and for slower migration, C1 <1.
While we derived a new torque formula for Type I migration
that included dynamic corrections (see Section 2), for comparison
we also used the conventional formula with the scaling factor
C1 ¼ 1.0.

We assumed that Type I migration ceases inside the inner
boundary of the disk, because at this point fg is locally zero. For
computational convenience, we set the disk inner boundary to be
the edge of the magnetospheric cavity at 0.04 AU.
3.4. Formation of gas giant planets

Models for the formation of gas giant planets were the same as
those used in Ida et al. (2013). Embryos were surrounded by
gaseous envelopes when their surface escape velocities became
larger than the sound speed of the surrounding disk gas. When
their mass grew (through planetesimal bombardment) above a
critical mass:

Mc;hydrox10

 
_Mc

10�6M4yr�1

!0:25

M4 (27)

both the radiative and convective transport of heat became suffi-
ciently efficient to allow their envelope to contract dynamically
(Ikoma et al., 2000).

In the above equation, we neglected the dependence on opacity
in the envelope (Hori and Ikoma, 2010). In regions where cores
have already acquired isolation mass, their planetesimal-accretion
rate ð _McÞ would be much diminished (Ikoma et al., 2000) and
Mc,hydro would be comparable to an Earth-mass, M4. However, gas
accretion also releases energy and its rate is still regulated by the
efficiency of radiative transfer in the envelope, such that:

dMp

dt
x

Mp

sKH
(28)

where Mp is the planet mass including gas envelope. According to
Ida and Lin (2008), we approximated the Kelvin-Helmholtz
contraction timescale, sKH, of the envelope using:

sKHx109
�
Mp

M4

��3
(29)

Eq. 28 shows that dMp/dt rapidly increases as Mp grows; how-
ever, this is limited by the global gas accretion rate throughout the
disk and by the process of gap formation near the protoplanets’
orbits. The disk accretion rate can be expressed as:

_Mdiskx3� 10�9fg

�
a

10�3

�
M1yr�1 (30)

where a is a parameter of alpha prescription for turbulent viscosity
(Shakura and Sunyaev, 1973). During the advanced stage of disk
evolution, we assumed that both _Mdisk and Sg evolved in propor-
tion to exp(�t/sdep). The rate of accretion onto the cores cannot
exceed _Mdisk.

A gap, or at least a partial gap, is formed when a planet’s tidal
torque exceeds the disk’s intrinsic viscous stress (Lin and
Papaloizou, 1985). This viscous condition for gap formation is
satisfied for planets with:
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Mp>Mg;visx30
�

a

10�3

�� a
1AU

�1=2� L�
L1

�1=4

M4 (31)

In this case, Type I migration transitions to Type II migration.
Fluid dynamic simulations (D’Angelo and Kley, 2003; D’Angelo and
Lubow, 2008) show that some fraction of gas still flows into the gap.
Following the results of Dobbs-Dixon et al. (2007), we completely
terminated gas accretion when a planet’s Hill radius became larger
than two times the disk scale height, which corresponded to the
thermal condition of Lin and Papaloizou (1985), that is:

Mp>Mg;thx0:95�103
� a
1AU

�3=4� L�
L1

�3=8�M�
M1

��1=2

M4 (32)

In general, our models for gas accretion rates onto the cores
were:

dMp

dt
¼ fgap _Mp;nogap (33)

when in the absence of any feedback on the disk structure.
Therefore, without the effect of gap opening:

_Mp;nogap ¼ min
�
Mp

sKH
; _Mdisk

�
(34)

and fgap is a reduction factor due to gap opening:

fgap ¼

8>>>>><
>>>>>:

1


forMp <Mg;vis

�
logMp� logMg;vis

logMg;th� logMg;vis

h
forMg;vis <Mp <Mg;th

i

0
h
forMp>Mg;th

i
(35)

3.5. Type II migration

During gap formation, embedded gas giants adjust their posi-
tions in the gap to establish a quasi equilibrium between the torque
applied on them from disk regions both interior and exterior to
their orbits. Subsequently, as the disk gas undergoes viscous
diffusion, this interaction leads to Type II migration.

We assumed that planets undergo Type II migration after they
have accreted a sufficient mass to satisfy the viscous condition
(Mg,vis < Mp) for gap formation.

While Mp increases, the disk mass declines owing to stellar and
planetary accretion and photoevaporation. While disk mass ex-
ceeds Mp (during the disk-dominated regime), planets’ Type II
migration is locked, with the viscous diffusion of the disk gas.
During the advanced stages of disk evolution, when the mass be-
comes smaller than Mp (during the planet-dominated regime),
embedded planets carry a major share of the total angular mo-
mentum content.

For the disk-dominated regime, the migration timescale is given
by:

smig2;diskx0:7� 105
�

a

10�3

��1� a
1AU

��M�
M1

��1=2
yr (36)

For the planet-dominated regime, the migration timescale is
given by:

smig2;plx5� 105f�1
g

�
C2a
10�4

��1�Mp

MJ

�� a
1AU

�1=2�M�
M1

��1=2

yr

(37)
where C2 is an efficiency factor associated with the degree of
asymmetry in the torques between the inner and outer disk re-
gions. If the inner disk is severely depleted, C2 ¼ 1. We treated the
factor C2 as a model parameter, and we set C2 ¼ 0.1.

4. Population synthesis of planetary systems

Using our new torque formula for Type I migration, wemodeled
the formation of planetary systems using Monte Carlo simulations.
The predicted mass and period distributions were compared with
those from a conventional Type I migration model.

4.1. Numerical settings

We first generated a set of 1000 disks with various values of fg,0
(the initial value of fg) and sdep. We adopted a range of disk model
parameters that represented the observed distribution of disk
properties and assigned them to each model with an appropriate
statistical weight. For the gaseous component, we assumed that fg,0
had a lognormal distribution centered on fg,0 ¼ 1 with a dispersion
of 1 and an upper cutoff at fg,0 ¼ 30, independent of the stellar
metallicity. For heavy elements, we choose fd;0 ¼ 10½Fe=H�d fg;0,
where [Fe/H]d is the metallicity of the disk. We assumed that these
disks had the same metallicities as their host stars. We also
assumed that sdep had log-uniform distributions in the range
106e107 yr.

For each disk, 15 values of a for the protoplanetary seeds were
selected from a long-uniform distribution in the range 0.05e30 AU,
assuming that themean orbital separation between planets was 0.2
on a logarithmic scale. Constant spacing in the logarithm corre-
sponded to the spacings between the cores, which were propor-
tional to a. This represented the simplest choice and a natural
outcome of dynamic isolation at the end of oligarchic growth.

In all simulations, the values a ¼ 10�3 and M* ¼ 1M1 were
assumed. Since ongoing radial velocity surveys are focused on
relatively metal-rich stars, we presented our results with [Fe/
H] ¼ 0.1.

We artificially terminated Type I and Type II migration near the
disk inner edge at 0.04 AU. We did not specify a survival criterion
for the close-in planets because we lacked adequate knowledge
about planets’ migration and their interaction with host stars near
the inner edge of their nascent disks. Hence, we recorded all of the
planets that migrated to the vicinity of their host stars. In reality, a
large fraction of the giant planets that have migrated to small disk
radii were either consumed (Sandquist et al., 1998) or tidally dis-
rupted (Trilling et al., 1998) by their host stars. Cores that migrate to
the inner edge of the disk may also coagulated and form super-
Earths (Ogihara and Ida, 2009); however, this was not considered
in our simulations.

4.2. Simulated individual systems

We compared the time evolution of planetary masses and
semimajor axes for the new torque formula model (Figs. 2a and 3a)
and the conventional torque formula model with C1 ¼ 1.0 (Figs. 2b
and 3b). We choose a disk a few times more massive (fg,0 ¼ 6.0 and
8.0) than theminimum solar nebula, and with sdep¼ 3� 106 yr. The
results showed that inward migration of planet embryos was
slowed significantly by dynamic effects. When dynamic effects
were considered, some cores survived and grew into gas giants;
however, when considering only static torque, all cores migrated to
the vicinity of their central star before growing enough to accrete
the nebula gas.

Fig. 4 shows the evolution of the dynamic correction factor (see
Eq. 18),



Figure 4. Evolution of the dynamic correction factor for a scaling factor of (a) fg,0 ¼ 3.0,
and (b) fg,0 ¼ 8.0. Units of mass (Mp) are Earth masses (M4 ¼ ME).

Figure 2. Growth and migration of planets for scaling factor fg,0 ¼ 3.0. Units of mass
(Mp) and semimajor axis (a) are Earth masses (M4 ¼ ME) and AU. (a) Mass evolutions
obtained from simulations with the new torque formula for Type I migration. (b)
Evolutions using the conventional formula (C1 ¼ 1.0).

Figure 3. Growth and migration of planets for scaling factor fg,0 ¼ 8.0. Units of mass
(Mp) and semimajor axis (a) are Earth masses (M4 ¼ ME) and AU. (a) Mass evolutions
obtained from simulations with the new torque formula for Type I migration. (b)
Evolutions using the conventional formula (C1 ¼ 1.0).
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GI=Gstatic ¼ min
�

1
1�mcð3=2þ pÞ;QðkÞ

�
(38)

with the mass of each planet embryo. The correction factors
remained small (�0.1) throughout the simulation; therefore, the
dynamic correction of Type I migration effectively prevented em-
bryos from migrating to the central star.
4.3. Distributions of mass and semimajor axes

We compared the predicted Mpea distributions using the new
torque formula (Fig. 5a) and the conventional formula with C1 ¼1.0
at t ¼ 2 � 107 yr. In order to directly compare the theoretical pre-
dictions with the observed data, we plotted values of Mp that were
1.27 times the values of Mpsini, as determined from radial velocity
measurements (Fig. 5c). This correction factor corresponded to
mean values of 1/(sini)¼ 4/p for a sample of planetary systemswith
randomly oriented orbital plants. To compare the theoretical re-
sults with M* ¼ 1M1, we plotted only the data of planets around
stars with M* ¼ 0.8�1.2M1 that have been observed by radial ve-
locity surveys.1

For the conventional models, the formation probability of gas
giants dramatically changed with C1 (Ida and Lin, 2008). Within the
limits of Type I migration with an efficiency comparable to that
deduced from the traditional linear torque analysis (i.e., with
C1 ¼ 1; Fig. 5b), all cores were cleared prior to gas depletion, such
that gas giant formation was effectively suppressed. However,
when considering the dynamic effects, a substantial fraction of the
cores survived and grew into large gas giants (Fig. 5a). We carry out
a Kolmogorov-Smirnov (K-S) test for statistical similarity between
the predicted Mpea distributions and the observed data for the
1 See http://exoplanet.eu/.

http://exoplanet.eu/


Figure 5. Planetary mass and semimajor axis distribution. Units of mass (Mp) and
semimajor axis (a) are Earth masses (M4 ¼ ME) and AU. (a) Distribution obtained from
Monte Carlo simulations with the new torque formula for Type I migration. (b) Dis-
tributions using the conventional formula (C1 ¼ 1.0). (c) Observational data of extra-
solar planets around stars with M* ¼ 0.8 � 1.2M1 detected by radial velocity surveys.
The determined value ofMpsin i is multiplied by 1/(sin i) ¼ 4/px 1.27, where a random
orientation of the planetary orbital planes is assumed.
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parameter domain of 0.1 AU < a < 5 AU and Mp > 100M. While the
conventional model produces no giant planets (Fig. 5b), the pre-
dictedMp � a distribution using the new torque formula (Fig. 5a) is
statistically similar to the observed data (Fig. 5c) within a signifi-
cance level of p-value > 0.05 for both the semimajor axis and mass
cumulative distribution functions.

Without considering the dynamic correction for Type I migra-
tion, when a planet’s mass exceeded that of Earth, the corotation
torque became smaller owing to saturation. At this point, static
torque affected the planet more efficiently so that its inward
migration was rapid. However, when the dynamic correction was
included, the migration timescale was short, and the saturation of
the corotation torque was less effective. Under these conditions,
inward migration slowed, which allowed for the formation of gas
giants before migration to the central star.

In summary, population synthesis simulations using our new
torque formula with dynamic correction (Fig. 5a) can explain the
gas giants (>100M4) observed in exoplanetary systems (Fig. 5c). In
contrast, simulations using a conventional formula (C1 ¼ 1.0;
Fig. 5b) cannot explain the observed data. These results show that
planet populations consistent with observations can be reproduced
naturally (i.e., without considering the reduction factor) if we take
into account dynamic corrections for Type I migration torque.
5. Conclusions

We derived a new torque formula for Type I migration by taking
into account dynamic corrections. Using this formula, we performed
population synthesis simulations with and without the effects of
dynamic torques. In most cases, inward migration was significantly
slowed by the dynamic effects. Considering just static torques, gas
giant formation was effectively suppressed by Type I migration of
cores; however, when dynamic effects were considered, a substan-
tial fraction of cores survived and grew into gas giants.
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Appendix. Static Torque formula

Static torque (Pa11 and CN14) is given by

Gstatic ¼ FLGLR þ
�
GVHSFðpnÞGðpnÞ þ GEHSFðpnÞF

�
pc
�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GðpnÞG

�
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�
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��r 


FeFi

(A1)

where GLR, GVHS, GEHS, GLVCT, and GLECT are the Lindblad torque,
vortensity and entropy related horseshoe drag torques, and linear
vortensity and entropy related corotation torques, respectively, as
given by Eqs. 3e7 in Paardekooper et al. (2011):

GLR ¼ ð�2:5� 1:7bþ 0:1aÞG0

.
geff (A2)

GVHS ¼ ½1:1ð3=2� aÞ�G0

.
geff (A3)

GEHS ¼ 7:9
�
x
.
geff

�
G0

.
geff (A4)

GLVCT ¼ ½0:7ð3=2� aÞ�G0

.
geff (A5)

GLECT ¼
h�

2:2� 1:4
.
geff

�i
G0

.
geff (A6)

where a ¼ d lnS/d ln r, b ¼ d lnTm/d ln r, and x ¼ b � (geff � 1)a.
Here, G0 ¼ ðq=hÞ2Sr4U2.

The functions F(pn), F(pc), G(pn), F(pc), K(pn), and K(pc) are related
to the ratio between the viscous/thermal diffusion time scale and
horseshoe liberation/horseshoe U-turn time scales, given by Eqs.
21, 23 and 30 in Paardekooper et al. (2011):
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FðpÞ ¼ 1
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The pn and pc are given by (Pa11 Eq. 19 and 40):

pn ¼ 2
3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2Ux3s
2pn

s
(A12)

pc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2Ux3s
2pc

s
(A13)

where (Pa11 Eqs. 48, 49) xs ¼ xs=r is given by

xs ¼ C
ffiffiffiffiffiffiffiffi
q=h

q
(A14)

C ¼ 1:1

g1=4eff

�
0:4
b=h

��1=4

(A15)

and (Pa11 Eq. 34)

c ¼ 4gðg� 1ÞsT4
3kr2H2U2 (A16)

The effective adiabatic index geff is given by (Pa11 Eqs. 45, 46):

geff ¼ 2Qg

gQ þ 1
2
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taking into account of the photon diffusion in a disk. Here,

Q ¼ 2c
3h3r2U

(A18)

Fe and Fi are the reduction factor due to eccentricity and incli-
nation of the planets, which are give by (CN15 Eqs. 16 and 20):

Fe ¼ exp

 
� e
ef

!
(A19)

where e is the plane’s eccentricity and ef is defined as:

ef ¼ h=2þ 0:01 (A20)

Fi ¼ 1� tanhði=hÞ (A21)

where i is the inclination of the planet. The factor FL is the reduction
in Lindblad torques when planets are on eccentric or inclined or-
bits, and is given by Cresswell and Nelson (2008):
FL ¼
"
Pe þ Pe

jPej �
 
0:07

�
i
h

�
þ 0:085

�
i
e

�4

� 0:08
�e
h

�� i
h

�2
!#�1

(A22)

where Pe is defined as

Pe ¼
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