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The ice-giant planet Uranus probably underwent a giant 
impact, given that its spin axis is tilted by 98 degrees1–3. That 
its satellite system is equally inclined and prograde suggests 
that it was formed as a consequence of the impact. However, 
the disks predicted by the impact simulations1,3,4 generally 
have sizes one order smaller and masses two orders larger 
than those of the observed system at present. Here we show, 
by means of a theoretical model, that the Uranian satellite for-
mation is regulated by the evolution of the impact-generated 
disk. Because the vaporization temperature of water ice is low 
and both Uranus and the impactor are assumed to be ice-dom-
inated, we can conclude that the impact-generated disk has 
mostly vaporized. We predict that the disk lost a substantial 
amount of water vapour mass and spread to the levels of the 
current system until the disk cooled down enough for ice con-
densation and accretion of icy particles to begin. From the pre-
dicted distribution of condensed ices, our N-body simulation 
is able to reproduce the observed mass–orbit configuration 
of Uranian satellites. This scenario contrasts with the giant-
impact model for the Earth’s Moon5, in which about half of the 
compact, impact-generated, solid or liquid disk is immediately 
incorporated into the Moon on impact6.

Uranus has five major satellites in a mass range of 10−6–10−4 MU 
(Fig. 1), where MU ≃ 8.7 × 1025 kg is the mass of Uranus, extended to 
about 25rU, where rU ≃ 2.5 × 107 m is the physical radius of Uranus 
(Fig. 1). The extension to about 25rU cannot be accounted for by tidal 
orbital expansions7. Their orbits are prograde to the spin of Uranus 
and nearly circular. The total mass of the satellites is about 10−4MU. 
The rock-to-ice ratios of the satellites are observationally estimated 
to be nearly 1:1 except for the innermost satellite, Miranda8, while 
Uranus consists mostly of ices9. For formation of the satellites, 
impact1 and circumplanetary sub-disk10 scenarios have been pro-
posed. Because the sub-disk that feeds H/He gas from a circumstel-
lar disk to the planet would be formed on the planetary orbital plane, 
the sub-disk scenario is not compatible with the inclined satellite 
system, unless multi-step, complicated mechanisms are considered11. 
It is much simpler to consider that the satellites are formed in the 
disk generated by the impact that tilted the spin axis and caused the 
current spin period (about 17.2 hours). The accretion of the satel-
lites from the impact-generated disk naturally results in the prograde 
orbits on the equatorial plane of Uranus. However, the theoretically 
predicted impact-generated disks1,3,4 are not only one order smaller 
and two orders more massive than in the current system but are 
also substantially depleted in rocky components, because rocks in 
the small core are not easily ejected by the impact. These difficul-
ties arose in previous work1,3,4 because the giant-impact model of the 
Earth’s Moon5 was simply translated to Uranus without taking into 
account the evolution of the water vapour disk.

We assume that both Uranus and the impactor are ice-dom-
inated with small rocky cores and that Uranus is covered by an 
atmosphere of 3–10 weight per cent H/He. The Uranus gravity 
accelerates the impact velocity to ≳ 20 km s−1 and, equivalently, the 
impact energy to ≳ 2 × 108 J kg−1, which is 100 times larger than 
the latent heat of H2O ice. As a result, the impact-generated disk 
consists of a mixture of water vapour and H/He gas. Although 
the icy mantle also includes CH4 and NH3 ices, we consider only 
the most abundant ice, H2O, as representative of the ices. Since 
ðcs=vKÞ2 ’ 3:3 ´ 10�2ðμall=2:8Þ�1ðT=104 KÞðr=rUÞ  1
I

, where T is 
the disk temperature, cs is the local velocity of sound, vK is the local 
Keplerian velocity, μall is the mean molecular weight of the mixture, 
the evaporated vapour does not escape from the Uranian system 
and remains as a circumplanetary disk.

As we show below, the final satellite mass and orbital distribu-
tions are solely determined by a condensation sequence of icy grains 
in the disk, and the turbulent viscous spreading and cooling of the 
disk play an essential part in satellite formation. We numerically 
solve the one-dimensional viscous diffusion equation of disk gas 
surface density Σg, given by12:
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r
∂
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1=2Þ
� �

¼ 0 ð1Þ

where the turbulent kinetic viscosity is modelled by ν ¼ αc2sΩ
�1

I
, 

where Ω is the orbital frequency of the disk gas, and α is a constant 
parameter that represents the turbulence strength (α ≪ 1)13. As 
local disk temperature, we use the photo-surface temperature by the 
viscous heating for simplicity12:

T ’ 9GMUΣgν

8σr3

� �1=4

ð2Þ

where G is the gravitational constant and σ is the Stefan–Boltzmann 
constant.

The numerically solved Σg and T evolution of the disk is shown 
in Fig. 2a,b. They show that the impact-generated disk quickly 
spreads and cools. By the conservation of total angular momen-
tum, the spreading is associated by accretion of the disk onto the 
planet. The disk converges to a quasi-steady-state accretion disk 
where the Σg and T distributions with radial distance r evolve 
self-similarly. We derive an approximate expression for the self-
similar solution of Σg and T in order to generalize the numeri-
cal results. For steady accretion (with Σgν constant), T ∝ r−3∕4  
(equation (2)) and ν / c2sΩ

�1 / Tr3=2 / r3=4

I
. The self-similar 

solution to the above equation with time-independent ν has 
already been derived12,14. In our case, ν also depends on Σg through 
T (equation (2)), decreasing with time. We modify the original 
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self-similar solution incorporating the additional Σg-dependence 
as (Methods):

Σg ¼ Σg;U0 t�21=22
0

r
rU

 �3=4

exp � r

rd0t
�12=22
0

 !5=4
2
4

3
5 ð3Þ

t0 ¼ 1þ t
tdiff0

¼ 1þ t
ð16=75Þðr2=νÞrd0 ;t¼0

ð4Þ

where Σg,U0 is the disk gas surface density at r = rU and at t = 0, tdiff0 
is the viscous diffusion timescale at rd0, and rd0 is the characteris-
tic disk radius at t = 0, respectively. We define t as the time after 
the impact-generated disk is relaxed to the quasi-steady-state self-
similar solution. The corresponding analytical T is derived from Σg 
with equation (2). The analytical solutions reproduce the numerical 
results except for the exponential tail (Fig. 2a,b).

The values of rd0 and Σg,U0 in the analytical solutions are given by 
the quantities of the impact-generated disk as (see equations (21) 
and (22) in Methods):

rd0 ’ 3:0
hrd;impi
2 rU

� �
rU ð5Þ

Σg;U0 ’ 6:5 ´ 107
hrd;impi
2rU

� ��5=4 Md;imp

10�2MU

� �
kg m�2 ð6Þ

where Md,imp is the total mass of the impact-gener-
ated disk, 〈rd,imp〉 is its mean orbital radius defined by 
hrd;impi ¼ ððJd;imp=Md;impÞ=r2UΩUÞ2 rU
I

, Jd,imp is its total angular 
momentum, and ΩU is the disk orbital frequency at r = rU. Thus, 
we have demonstrated that the disk spreading and cooling are 
mostly determined by only two parameters, 〈rd,imp〉 and Md,imp, inde-
pendently of other details of the impact-generated disk. The past-
impact simulations1,3,4 showed that 〈rd,imp〉 ≃ 2rU and Md,imp ≃ 10−2 
MU are typical values.

When the disk temperature decays to the ice condensation tem-
perature Tice ≃ 240 K (equation (49) in Methods) for the first time, 
we deposit the condensed ice surface density by Σice = γΣg, where 
γ is the abundance of water vapour in the disk. Smooth particle 
hydrodynamics (SPH) simulations suggest γ ≃ 0.1 − 0.5 (refs. 1,3,4).  
We use γ = 0.3 as a nominal value and γ03 = γ∕0.3. With T ≃ 240 K, 
the numerically obtained Σice and deposited radius (‘ice line’) rice are 
plotted in Fig. 2c,d. Because ice condensation occurs after substan-
tial evolution of the quasi-steady-state disk, the ice distribution is 
independent of the detailed structure of the initial impact-gener-
ated disk. In particular, Σice at each r is independent of Md,imp (Fig. 
2c), and the analytical estimation of Σice below shows that it is inde-
pendent even of 〈rd,imp〉. From equation (2):

T ’ 240
α

10�3

� �1=3 Σg

4:0 ´ 102kgm�2

� �1=3 r
rU

� ��1=2

ðKÞ ð7Þ

From equation (7) with Tice ≃ 240 K, we obtain:

Σice ’ γΣg ’ 1:2 ´ 102β�1γ03
r
rU

� �3=2

kg m�2 ð8Þ

where β ¼ ðα=10�3ÞðT ice=240KÞ�3

I
. This completely reproduces 

Σice by the numerical solution (Fig. 2c).
The positive gradient of Σice (∝ r3∕2) is produced from Σg with the 

negative slope (∝ r−3∕4), because, in inner regions, the viscous heating 
is more efficient (equation (2)) and the disk must be more signifi-
cantly depleted to realize T ≲ Tice than in outer regions. The positive 
gradient implies that most of the condensed ice mass is located in 
an outermost region. Although Σice does not depend on 〈rd,imp〉 and 
Md,imp at each r, they affect how far the distribution extends, although 
the dependencies are weak. The outer truncation radius for the Σice-
distribution is evaluated as below; it reproduces the numerical results.

The ice condensation occurs when the gas temperature T exceeds 
Tice for the first time at individual r. As the gas disk further expands, 
T in the outer regions becomes well below Tice. However, icy grains 
do not condense there, because the ices have already condensed and 
the gas there is free of water vapour. The maximum radius rmax

I
 of the 

ice condensation is estimated by the intersection of equation (8) and 
the envelope curve of the superposition of the Σg–r curves at differ-
ent times (Fig. 2a). It is given by (see Methods and equation (23)):

rmax ’ 20 β
hrd;impi
2rU

 �5=4 Md;imp

10�2MU

 " #1=4
rU ð9Þ

From equations (8) and (9), the total condensed ice mass is:

Mice ’
R rmax

rU
2πrΣicedr ’ 0:58 ´ 10�4

´ β1=8γ03
hrd;impi
2rU

 �5=4 Md;imp

10�2MU

 7=8
MU

ð10Þ

which is consistent with the current total mass of Uranian satellites 
(about 1.0 × 10−4MU). Although the turbulent viscosity parameter 
α is uncertain, the α-dependence of Mice and rmax

I
 are very weak (α 

∝ β). Thus, we have demonstrated that the compact (〈rd,imp〉 ≃ 2rU) 
and massive (Md,imp ≃ 10−2MU) initial disk produces the condensed 
ice confined at a distant place, rmax ’ 20 rU

I
 with the highly reduced 

total mass (about 10−4MU). This result clearly solves the problem of 
a too massive and too compact impact-generated disk.

Once (sub-micrometre) icy grains condense in the disk, they 
coagulate with one another. In general, as the icy particles grow, 
the particles drift inward, pulled by the aerodynamic gas drag15. 
However, the disk gas density is depleted so severely before the 
ice condensation that the growth is much faster than the drift (see 
Methods) and kilometre-sized ‘satellitesimals’ are formed in  situ 
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Fig. 1 | The mass (M) and orbital radius (r) distribution of the current 
Uranian satellite systems and that predicted by N-body simulation.  
The five major Uranian satellites are represented by the filled blue circles in 
the range M ≳ 10−6 MU and r ≳ 5rU, where MU and rU are the mass and orbital 
radius of Uranus. Minor satellites with 10−8 MU to 10−7 MU are also plotted 
(tiny filled blue circles). The size of the circles is proportional to the physical 
radius. The open red circles represent the result of N-body simulations of 
accretion from condensed icy particles (10,000 bodies with masses of 0.92 
× 10−8 MU) at 1,300 years (see Methods). With a longer run, some of the 
accreted satellites would collide with each other, minor satellites would 
accrete from the small satellitesimals with M ≃ 10−8 MU at r < 10rU and the 
satellitesimals with M ≃ 10−7 MU at r > 10rU would be swept by the proto-
satellites, which is more consistent with observations of the current Uranian 
satellites. The dashed black line is the analytically derived ‘isolation mass' in 
the oligarchic growth model of ref. 18 given by equation (11).
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without radial drift. Owing to the disk gas depletion, ‘type I migra-
tion’ of proto-satellites caused by the torque from density waves in 
the disk would not be important, either (Methods). Therefore, the 
satellitesimals and satellites must be formed in situ.

The vaporization of rocks occurs at T > 2,000 K (ref. 16). Owing 
to the high vaporization or condensation temperature, silicate 
(rock components) grains should quickly re-condense, while the 
disk is still massive and compact. Our model naturally produces 
an enhanced rock-to-ice ratio of the satellites because the ices con-
dense after a reduction of water vapour by two orders of magni-
tude, whereas the rocks condense before substantial reduction has 
occurred. Although the silicates condense only in the inner region, 
they would also spread uniformly in the disk. Because silicate par-
ticles are not sticky at silicate–silicate collisions17, they do not grow 
larger than about 100 μm and they radially spread with the turbu-
lent viscous dissipation in the disk, unless the turbulence is very 
weak (see Methods). After the disk cools down and ice condensa-
tion starts, silicate particles can stick to icy particles or ices may 
condense to the silicate particle surface beyond the ice line one after 
another, which could potentially account for a relatively uniform 
rock-to-ice ratio (about O(1)) of all the satellites. Thus, our model 
may also solve the small rock-to-ice ratio produced by previous 
simulations1,3,4, although more detailed investigation is needed.

The condensed ice mass distribution peaks strongly at � rmax
I

.  
This is consistent with the mass–orbit distribution of Uranian satel-
lites (Fig. 1). We have performed a direct three-dimensional N-body 
simulation from 10,000 bodies with the individual masses 0.92 × 
10−8 MU that follow the ice distribution given by equation (8) with 
rmax ¼ 20 rU
I

 and β = γ03 = 1 (Methods). We note that pebble accre-
tion is negligible in our system (Methods). The result reproduces 

the mass–orbit configuration of the current Uranian satellites in  
Fig. 1. In a longer run, a more consistent result would be obtained 
(see the legend to Fig. 1). Because orbital migration of satellites is 
not important, the satellites are not trapped in resonant orbits, and 
the mass of accreted satellites is consistent with the isolation mass 
in the oligarchic growth model of ref. 18, given by (see Methods and 
equation (53)):

miso

MU
’ 0:74 ´ 10�4β�3=2γ3=203

r
20rU

� �21=4

ð11Þ

We also performed N-body simulations from ordinary Σice-
distributions with a negative radial gradient and robustly showed 
that a positive gradient of Σice is required to reproduce the current 
mass–orbit configuration19.

We have shown that the current Uranian major satellites are 
very well reproduced by the derived analytical formulas based on 
viscous spreading and cooling of the disk generated by an impact 
that is constrained by the spin period and the tilted spin, indepen-
dently of the details of the initial disk parameters. Although we have 
focused on Uranus, the model here provides a general scenario for 
satellite formation around ice giants with scaling by the mass and 
the physical radius of a central planet, which is completely differ-
ent from satellite-formation scenarios around terrestrial planets and 
gas giants. It could also be applied to the inner region of Neptune’s 
satellite system, where we can neglect the effect of Triton that may 
have been captured20. Observations suggest that many of the super-
Earths discovered in exoplanetary systems may consist of abundant 
water ice, even in close-in (warm) orbits21. The model here may also 
provide insights into possible icy satellites of super-Earths.
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Fig. 2 | The evolution of the disk of a mixture of H/He gas and water vapour and the associated ice condensation. a, The evolution of the disk  
surface density of a mixture of H/He gas and water vapour Σg. b, The evolution of the disk temperature T with α = 10−3. The solid and dashed red  
lines are the numerically solved distribution and the analytical distribution (equations (2) and (3)). In panels a and b, the upper to lower curves for  
r < 10rU represent the distributions at t = 0, 10, 102, 103 and 104 years. The initial disk for the numerical calculation is set to be centrally confined,  
Σg,imp ¼ 2:4 ´ 108ðr=rUÞ�3 kg m�2

I
 with a truncation at r = 10rU, which has Md,imp = 10−2 MU and 〈rd,imp〉 ≃ 2.3rU. In the analytical self-similar formula,  

rd0 = 3rU and Σd0 = 0.3 Σg,imp are used, according to the conversion given by equations (5) and (6). c,d, The time evolution of the ice line is plotted in panel 
d. The blue, red and light blue lines are for Md,imp = 3 × 10−3 MU, 10−2 MU and 3 × 10−2 MU, respectively. When T becomes equal to Tice, we assume that ice 
condenses with the surface density Σice = γΣg at that time (panel c), where we assumed γ = 0.3.
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Methods
Theory and numerical analysis. Approximate self-similar solution to viscous 
diffusion equation. The analytical self-similar solution to equation (1) is given by12,14:

Σg / t
�5=2�ζ

2�ζ
 r�ζ exp � r

rd0

 2�ζ

t�1


" #
ð12Þ

where ζ ¼ d ln ν=d ln r
I

 and t* = 1 + t∕tdiff:

tdiff ¼
1

3ð2� ζÞ2
r2

ν

� �

rd0

ð13Þ

where subscript rd0 indicates the value at rd0. The surface density is ∝ r−ζ for 
r  rd ¼ rd0 t 1=ð2�ζÞ


I

 and it exponentially decays for r ≳ rd, so that rd is the 
characteristic disk radius. In the case of our simple viscous heating model (equation 
(2)), ν  αc2s=Ω / T r3=2 / Σ1=3

g r
I

. In inner-disk regions, the disk accretion is 
steady and its rate is independent of r, that is, Σgν is independent of r. In this case, ν 
∝ r3∕4. With ζ = 3∕4, the self-similar solution given by equation (12) is:

Σg ¼ Σg;U0 t�7=5


r
rU

 �3=4

exp � r
rd0

 5=4

t�1


" #
ð14Þ

where rU is the Uranian physical radius given by rU ≃ 2.5 × 107 m, and Σg,U0 is the 
initial disk surface density at r = rU.

In the original self-similar solution, tdiff (equation (13)) is a constant with time. 
However, in our case, ν / Σ1=3

g

I
. As the disk viscously expands and Σg decreases, 

ν at r = rd0 in equation (13) also decreases. As a result, tdiff increases. Because we 
are concerned with t > tdiff, t / t�1

diff / ν / Σ1=3
g

I
. Taking this effect into account, 

equation (14) suggests Σg / t�7=5
0 Σð�7=5Þ ´ ð1=3Þ

g

I
, that is, Σg / t�21=22

0
I

, where t*0 = 1 
+ t∕tdiff0, and tdiff0 is defined by quantities at t = 0 as (equation (13) with ζ = 3∕4):

tdiff0 ¼
16
75

r2

ν

� �

rd0 ;t¼0
ð15Þ

Because Σg / t�21=22
0

I
 and t / t0Σ1=3

g / t15=220
I

, the final formula is:

Σg ¼ Σg;U0 t�21=22
0

r
rU

 �3=4

exp � r
rd0

 5=4

t�15=22
0

" #
ð16Þ

t0 ¼ 1þ t=tdiff0 ð17Þ

Although this formula is no longer a strict self-similar solution, it reproduces the 
numerical solution well, as shown in Fig. 2.

Initial relaxation to the self-similar solution. The impact-generated disk is quickly 
relaxed to the analytical quasi-steady-state self-similar solution (equation (16)). 
The parameters rd0 and Σg,U0 in the self-similar solution are estimated by the total 
mass (Md,imp) and the angular momentum (Jd,imp) of the impact-generated disk. In 
general, SPH simulations show that the impact-generated disk is compact and the 
mean radius is 〈rd,imp〉 ≃ 2rU (refs. 1,3,4), where 〈rd,imp〉 is defined with the specific 
angular momentum, jd,imp = Jd,imp∕Md,imp, by hrd;impi ¼ ðjd;imp=r

2
UΩUÞ2rU

I
. The value 

of 〈rd,imp〉 is larger for a less steep disk surface density distribution. In the SPH 
impact simulations, debris particles generally have eccentric orbits. Since the orbits 
should be eventually circularized, conserving angular momentum, we define 〈rd,imp〉 
with the assumption that the orbits are circular, while jd,imp must be calculated from 
debris particles in eccentric orbits in the simulation results.

Because the radial gradient of the disk surface density is generally very steep, 
the disk expands to a self-similar distribution, almost maintaining the total 
disk angular momentum. While the total angular momentum is conserved, the 
innermost disk generally tends to spiral in by losing angular momentum. The 
one-dimensional diffusion simulations in this paper show that half of the mass 
inside 〈rd,imp〉 falls onto the planet until the disk settles down to the self-similar 
solution. If we consider the disk surface density distribution just after the impact as 
Σg ∝ r−3 with a truncation at r = 10rU, as suggested by SPH simulations, the initial 
mass of the impact-generated disk (Md,imp) is decreased by about 20% in the early 
relaxation. Using Jd,imp of the impact-generated disk and the modified disk mass 
0.8Md,imp, we can evaluate rd0 and Σg,U0 in the self-similar solution as follows.

The total disk mass and angular momentum of the self-similar solution are:

Md;ss ¼
R1
rU
2πrΣgdr ¼ 8π

5 r
2
UΣg;U0

rd0
rU

 5=4
e�ðrd0=rUÞ�5=4

’ 8π
5 r

2
UΣg;U0

rd0
rU

 5=4
´ 0:776

ð18Þ

Jd;ss ¼
R1
rU
2πrΣg

ffiffiffiffiffiffiffiffiffiffiffiffiffi
GMUr

p
dr ¼ 8π

5 r
4
UΩUΣg;U0

rd0
rU

 7=4
Γ 7

5 ;
rd0
rU

 �5=4
 

’ 8π
5 r

4
UΣg;U0ΩU

rd0
rU

 7=4
´ 0:797

ð19Þ

where Γ is a 2nd-kind incomplete gamma function, ΩU is the disk orbital frequency 
at r = rU, and we used rd0∕rU ≃ 3 to evaluate e�ðrd0=rUÞ�5=4

I
 and Γ 7

5 ; ðrd0=rUÞ
�5=4

� �

I

.  
From equations (18) and (19), the mean specific angular momentum of the self-
similar solution is given by:

jd;ss ’
Jd;ss
Md;ss

¼ 1:03
rd0
rU

� �1=2

ΩUr
2
U

ð20Þ

Because jd,ss = Jd,ss∕Md,ss ≃ Jd,imp∕0.8Md,imp ≃ 1.25 jd,imp:

rd0 ’ 1:47
jd;imp

r2UΩU

� �2

rU ¼ 1:47 hrd;impi ð21Þ

From equation (18) with Md,ss ≃ 0.8 Md,imp, the surface density of the self-similar 
solution after the initial relaxation of the impact-generated disk is:

Σg;U0 ’ 0:256 rd0
rU

� ��5=4 Md;ss

r2U

� �

’ 6:5 ´ 107 hrd;impi
2rU

� ��5=4 Md;imp

10�2MU

� �
kg m�2

ð22Þ

In the case of the impact-generated disk with Σg ¼ Σg;imp0ðr=rUÞ�3

I
 with a 

truncation at r = 10rU, Md;imp ¼ 0:9 ´ 2πΣg;imp0 r2U
I

 and 〈rd,imp〉 ≃ 2.25 rU, so that rd0 
≃ 3.3 rU and Σg,U0 ≃ 0.26Σg,imp0.

As discussed in the main text, to evaluate the outer limit of the ice 
condensation, the envelope curve of the superposition of the Σg–r curves at all the 
different times is important. The Σg-distribution of the analytical solution starts 
exponentially declining at rd ’ rd0 t12=220

I
 and the absolute values of Σg at the same 

r scale by t�21=22
�0
I

, while Σg further decreases in proportion to r�3=4
d / t�9=22

0
I

, as 
shown in equation (16). Therefore, the envelope curve is given by:

Σg;env ’ Σg;U0
r
rU

� ��½ð21þ9Þ=22=ð12=22Þ

’ 6:5 ´ 107 hrd;impi
2rU

� ��5=4 Md;imp

10�2MU

� �
r
rU

� ��5=2
kgm�2

ð23Þ

It agrees with the numerical result in Fig. 2. The intersection radius between Σg,env 
and Σg at the ice condensation (equation (47)) is given by:

rmax ’ 20 β
hrd;impi
2rU

 �5=4 Md;imp

10�2MU

 " #1=4
rU ð24Þ

Icy grain growth/drift and disk diffusion timescales. Here we show that the growth 
of condensed icy particles is much faster than their radial drift and the gas disk 
diffusion. Thereby, the condensed icy grains quickly grow in situ to kilometre-sized 
‘satellitesimals’, which are the building blocks of satellites, in the H/He gas disk. We 
estimate the timescales of individual processes at r ≃ 20rU because most of the icy 
grains condense there.

Disk diffusion timescale. We consider a disk with a characteristic radius of rd0 and 
a turbulent viscosity of αc2sΩ

�1

I
, where cs is the local sound velocity of the disk gas, 

Ω is the local orbital frequency of the gas, and α is a parameter to represent the 
strength of turbulence (α ≪ 1)13. From equations (16) and (17), the disk diffusion 
timescale is given by:

tdiff ’
Σg

dΣg=dt
’ tdiff0 t0 ’ maxðtdiff0; tÞ ð25Þ

where tdiff0 is the initial disk diffusion timescale given by:

tdiff0 ’
16r2

75ν

 

rd0 ;t¼0

’ 16
75 α

cs
vK

 �2

Ω�1

" #

rd0 ;t¼0

ð26Þ

The value of cs∕vK, which is equivalent to the disk aspect ratio, is:

cs
vK

’ 0:0564
T

240K

� �1=2 r
rU

� �1=2

ð27Þ

where we use a mean molecular weight of about 2.8. Substituting equations (6) and 
(7) into equation (27), for the initial self-similar disk after the relaxation:

cs
vK

� �

rd0 ;t¼0

’ 0:416
hrd;impi
2rU

� ��5=8 Md;imp

10�2MU

� �1=2 rd0
rU

� �1=8

ð28Þ

Adopting a typical impact-generated disk with 〈rd,imp〉 ≃ 2 rU and Md,imp ≃ 10−2MU 
and the corresponding relaxed disk with rd0 ≃ 3 rU, and scaling Ω−1 at r ≃ 20rU, 
equation (26) reads as follows:

tdiff0 ’ 54
α

10�3

� ��1
Ω�1 ð29Þ
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Because Σg / t�21=22
0

I
, the time from the initial Σg given by equation (6) to Σg at 

the ice condensation given by equation (8) at r ≃ 20 astronomical units is:

t ’ t0 tdiff0 ’ Σg; equationð6Þf
Σg;equationð8Þ

� �22=21
tdiff0

’ 1:7 ´ 104 β
hrd;impi
2rU

� ��5=4 Md;imp

10�2MU

� �� �22=21
tdiff0

ð30Þ

Therefore, the disk diffusion timescale at the ice condensation is:

tdiff ’ t ’ 9:2 ´ 105

´ β
hrd;impi
2rU

� ��5=4 Md;imp

10�2MU

� �� �22=21
α

10�3

� ��1
Ω�1

ð31Þ

Drift timescale of icy particles due to gas drag. The condensed icy grains coagulate 
with each other. As the icy particles grow, their motions become less coupled to the 
disk gas. The degree of the decoupling is represented by the Stokes number, St = 
tstopΩ, where tstop is the stopping time due to the aerodynamic gas drag. The disk gas 
rotates more slowly than the particles by a small fraction of η ’ ðcs=vKÞ2

I
(≪ 1). As 

a result of the drag from the slower-rotating disk gas, the particles drift inward with 
the drift timescale given by15:

tdrift ’
r
vr

’ r
2η vK

1þ St2

St
’ 0:5

cs
vK

� ��2 1þ St2

St
Ω�1 ð32Þ

where vr is the radial drift velocity. At r ≃ 20 rU, ðcs=vKÞ�2 ’ 16
I

 (equation (27)). 
The drift is the fastest at St ≃ 1.

Growth timescale of icy particles. The growth timescale (the mass-doubling 
timescale) of icy particles with St ≲ 1 is given by:

tgrow ’ 1

nπR2Δv
ð33Þ

where R is the particle physical radius, n is their spatial number density:

n ¼
ρp

ð4π=3ÞρmatR
3 ð34Þ

where ρp and ρmat are the spatial and material densities of the particles, and Δv is the 
relative velocity between the particles22:

Δv ’ 3αStð Þ1=2cs ð35Þ

The icy particle spatial density is given by their surface density Σice as23:

ρp ’ Σiceffiffiffiffiffi
2π

p
hp

’ Σiceffiffiffiffiffi
2π

p
hg

1þ St
α

 1=2

ð36Þ

where hp and hg are the particle and the gas vertical scale heights. Substituting 
equations (34), (35) and (36) into equation (33), we obtain:

tgrow ’ 4
ffiffiffiffiffi
2π

p

3
ffiffiffi
3

p ρmatRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
StðStþ αÞ

p
Σice

Ω�1 ð37Þ

where we used the disk gas scale height as given by hg ≃ csΩ−1.
In the situation we are considering, the drag law is mostly in the Stokes drag 

regime. In this case, the Stokes number is given by:

St ’ 4ρmatσcollR
2Ω

9μHHe mH cs
’ 1:5 ´ 10�6 T ice

240K

� ��1=2 R
μm

� �2 r
rU

� ��3=2

ð38Þ

where we used ρmat ≃ 103 kg∕m3, μHHe ≃ 2.4 is the mean molecular weight for H-He 
gas, mH ≃ 1.67 × 10−21 kg is the hydrogen mass, and σcol ≃ 2 × 10−11 m2 is the collision 
cross-section. Substituting equations (50) and (8) into equation (37), we obtain:

tgrow ’ 1
Stþ α

10�4

� ��1=2 γ

0:3

� ��1 α

10�3

� � T ice

240K

� ��11=4 r
rU

� ��3=4

Ω�1 ð39Þ

Timescale comparison. Because cs < vK and α ≪ 1:

tgrow  tdrift; tdiff ð40Þ

Around St ≃ 1:

tgrow  tdrift  tdiff : ð41Þ

These results imply that the condensed icy grains quickly grow to kilometre-
sized satellitesimals in situ in the H/He gas disk. The satellitesimal motions are 
decoupled from the disk gas.

Ice condensation. Icy grains condense when the vapour pressure exceeds the vapour 
saturation pressure. Because the vapour saturation pressure depends sensitively on 
temperature, the condensation condition is often described by T < Tice, where Tice is 
the condensation temperature given by24:

T ice ’
A

B� log 10½PH2O ðPaÞ K ð42Þ

with:

A ’ 2633 ; B ’ 12:06 ð43Þ

where PH2O is the partial pressure of water vapour in the disk, given by:

PH2O ¼ γ
μall
μH2O

P ’ 0:156 γ P ð44Þ

where P is the total pressure, γ = ΣH2O∕Σg, and μall ≃ 2.8 and μH2O = 18 are the total 
and H2O mean molecular weight.

The total pressure is:

P ¼ ρgc
2
s ¼

Σgffiffiffiffiffi
2π

p csΩ ’ 61:9
α

10�3

 �1 T
240K

 7=2

Pa ð45Þ

where we used:

cs ’ 8:41 ´ 102 ðμall=2:8Þ�1=2ðT=240KÞ1=2 m s�1 ð46Þ

and Σg obtained by equation (2) is:

Σg ’ 4:02 ´ 102
α

10�3

� ��1 T
240K

� �3 r
rU

� �3=2

kgm�2 ð47Þ

Thereby:

PH2O ¼ 0:156 γP ’ 9:66γ
α

10�3

� ��1 T
240K

� �7=2

Pa ð48Þ

From equations (42) and (48) with T = Tice, we found:

T ice ’ 2;633

12:06�0:98�log 10
γ
0:3

α
10�3ð Þ�1

  K

’ 238

1� 1
11:08log 10

γ
0:3

α
10�3ð Þ�1

  K ’ 238þ 21 log 10
γ
0:3

α
10�3

� �1
h i

K
ð49Þ

Note that the r-dependence vanishes for Tice in our disk model.

Barriers for silicate particle sticking. When collision velocity exceeds a threshold 
value (about 1 m s–1), silicate–silicate collisional sticking is inhibited by rebounding 
or fragmentation17. In the parameter range we consider, the particle collision 
velocity induced by turbulence is given by equations (35) and (46). The maximum 
Stokes number of the particles that allows the sticking is given by vbf ≃ Δv as:

Stmax ’ 1
3α

vbf
cs

� �2

’ 5 ´ 10�4 α
10�3

� ��1 vbf
1m s�1

� �2 μall
2:8

� �
T
240 K
� ��1

ð50Þ

Thus, silicates can grow only up to St ≃ 5 × 10−4 until T deceases to the ice 
condensation temperature of about 240 K. In the Stokes drag regime, it corresponds 
to a particle size of around 100 μm. The silicate particles can form satellitesimals only 
after ices condense and they stick to the icy particles or ices condense to their surface.

N-body simulation. We perform a three-dimensional N-body simulation from 
10,000 bodies (satellitesimals) with individual masses 0.92 × 10−8 MU with the 
predicted ice distribution given by equation (8) with rmax ¼ 20rU

I
 and β = γ03 = 

1. Gravitational interactions of all the bodies are included. Aerodynamical gas 
drag to satellitesimals and type I migration due to disk–planet interactions are 
neglected as below. Tidal interactions with Uranus are also neglected, because the 
timescale of our run is too short for the effect to be important. We assume perfect 
accretion and the physical radii are increased by a factor of 2 to accelerate the 
growth. Small eccentricities and inclinations are given initially. They are quickly 
relaxed by gravitational stirring and collision damping. We note that since there is 
no large reservoir of icy particles in the outer region of the disk and no icy particle 
supply from outside the Uranian system, pebble accretion is not effective and 
satellitesimals grow through mutual collisions.

When a proto-satellite grows, type I migration due to the torque from the 
density waves in the gas disk can become important. However, we show that its 
timescale is longer than the disk diffusion timescale and its effect is negligible. The 
migration timescale of a satellite with mass m is25:

tmig ’
1

2:7þ 1:1 ´ ð3=4Þ
MU

m

� �
MU

Σgr2

� �
cs
vK

� �2

Ω�1 ð51Þ
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Because type I migration is caused by a residual between the inner and outer disk 
torques and between the Lindblad and corotation torques, the numerical factor 
depends on the gas disk structure (sometimes it changes the sign). However, the 
absolute value of the timescale is generally of the same order for any disk structure. 
At the ice condensation with T ≃ 240 K at r ≃ 20rU, cs∕vK ≃ 0.25 (equation (27)). 
For m∕MU ≃ 3 × 10−5 and Σgr2∕MU ≃ 10−4, where we consider the most-massive 
satellites, the type I migration timescale is tmig ≃ 0.6 × 107 Ω−1. Because tdiff at the 
ice condensation is approximately 0.9 × 106Ω−1 (equation (29)) and the H/He gas 
should decay more when the large enough satellites grow from satellitesimals, it is 
predicted that tmig ≫ tdiff. Because tdiff / t0 / Σ�22=21

g

I
 and tmig ∝ 1/Σg, the relation 

of tmig ≫ tdiff does not change afterwards. Therefore, type I migration of proto-
satellites is negligible.

Isolation mass in oligarchic growth. In the context of planet accretion, if orbital 
migration is neglected, the planetary accretion is terminated when small bodies in 
the feeding zone of the planet are consumed, and the planetary mass at that point 
is called ‘isolation mass.’18 In the system we consider here, the isolation mass (miso) 
is defined by:

miso ¼ 2πrΔrΣice ð52Þ

where Δr is the orbital distance between proto-satellites and 
Δr ’ 10ð2miso=3MUÞ1=3r
I

. It is rewritten as:

miso
MU

’ 10 ´ 21=3
31=3

2πΣicer2

MU

� �3=2

’ 0:74 ´ 10�4β�3=2γ3=203
r

20rU

� �21=4 ð53Þ

The steep radial gradient of miso explains the orbital configuration of the current 
Uranian satellites (Fig. 1).
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